Visual Programming with Orange Tool
In this blog, I will show how to split our data into training data and testing data in Orange, how to use cross-validation in Orange.
Creating the Workflow
First, we use the File widget in the canvas and load the inbuilt titanic dataset in the workflow.
Next, send the input data to the widget Data Sampler. Data Sampler selects a subset of data instances from an input data set. It outputs a sampled and a complementary data set (with instances from the input set that is not included in the sampled data set). The output is processed after the input data set is provided and Sample Data is pressed. Here I sampled the data 70% output sampled data and 30% will be complementary data set.
Now send the sample data from Data Sampler to the Test and Score widget. The widget tests learning algorithms. Different sampling schemes are available, including using separate test data. The widget does two things. First, it shows a table with different classifier performance measures, such as classification accuracy and area under the curve. Second, it outputs evaluation results, which can be used by other widgets for analyzing the performance of classifiers, such as ROC Analysis or Confusion Matrix.
The sample data from Test and Score is sent to three different learning algorithms namely Neural Network, Naive Bayes and Logistic Regression.
Sampling using Cross-Validation in Orange
Cross-validation splits the data into a given number of folds (usually 5 or 10). Cross-validation is primarily used in applied machine learning to estimate the skill of a machine learning model on unseen data. That is, to use a limited sample in order to estimate how the model is expected to perform in general when used to make predictions on data not used during the training of the model.
Split data in Training data and Testing data in Orange
To split the data into train and test datasets, we will send 70% of the sampled data from Data Sampler as the train data and the remaining 30% data as the test data by clicking on the link between Data Sampler and Test and Score. In there set the link from Data Sample box to Databox and Remaining Databox to Test Data as shown in the below figure.
Now, there will be two flows set up from Data Sampler to Test and Score widget: one flow which sends the 70% Data Sample i.e Train data to Test and Score and second flow which sends the 30% Remaining Data i.e Test Data to Test and Score widget.
Now get the comparison scores of the three different algorithms by testing on the train data. To do so double click on the Test and Score widget and choose the option of Test on train data there and get the scores for all three algorithms.
To test the learning algorithms on the basis of the test data choose the option of Test on test data in the Test and Score widget.